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Abstract--In this paper, a theoretical study is presented for the problem of double-diffusion from a vertical 
plate embedded in a porous matrix that is saturated with a non-Newtonian (power law) fluid. The study 
consists of two parts : In the first part, scaling analysis is utilized to obtain estimates of the quantities of 
interest and to identify the various possible flow regimes depending on the values of the buoyancy ratio 
and the Lewis number. This task is performed for both the case of a wall with constant temperature and 
concentration and the case of a wall with constant heat and species flux. In the second part of the study, a 
numerical solution of the problem is presented for the general case of a wall with arbitrarily varying 
temperature and concentration. The values of the relevant parameters resulting in a constant heat and 
species flux or a constant temperature and concentration at the wall are identified. The dependence of the 
flow, temperature, and concentration fields as well as of the local heat and species fluxes at the wall on the 
power law erxponent, the buoyancy ratio and the Lewis number is documented for the two cases: (a) 

constant temperature and concentration, (b) constant heat and species flux. 

1. INTRODUCI"ION 

Double-diffusive convection in fluid saturated media 
occurs in many engineering applications exemplified 
by oil recovery, geothermal energy extraction, food 
processing, materials processing, the dispersion of  
chemical contaminants in various processes in the 
chemical industry and in the environment, and the 
migration of  moisture in insulation and grain storage 
spaces. It  is because of  this reason that several studies 
have been reported in the literature that are relevant to 
double-diffusive convection in fluid saturated porous 
media. To exemplify, Poulikakos [1] studied theor- 
etically the problem of  double-diffusion from a point 
source situated in a porous medium. Interesting flow 
structures were found to exist especially in the case 
where the mass transfer driven ftow was opposing the 
heat transfer driven flow. The study of  Poulikakos [1] 
was subsequently extended to the investigation 
of  double-diffusion from a line source in a porous 
medium [2]. 

Bejan and Khair  [3] solved the problem of  double- 
diffusion from a vertical plate embedded in a porous 
medium. Through scale analysis, they showed that 
the natural convection flow conforms to one of  four 
possible regimes depending on the value of  the con- 
centration to thermal buoyancy ratio and the Lewis 
number. The scale analysis was validated by a numeri- 
cal solution of  the, problem. Jang and Chang [4, 5] 
reported the effect of  the wall inclination on the com- 
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bined heat and mass transport phenomenon by gen- 
eralizing the similarity solution approach adopted by 
Bejan and Khair  [3]. The transient development of  
velocity, temperature, and concentration boundary 
layers near a vertical surface embedded in a porous 
medium was documented by Jang and Ni  [6]. 

A number of  studies have been reported in the 
literature focusing on the problem of  double-diffusion 
in a porous layer heated from below. To this end, 
Nield [7], Taunton and Lightfoot  [8] and Selimos and 
Poulikakos [9] have reported linear stability analyses 
of  this problem. Rudraiah et al. [10] have performed 
a nonlinear stability analysis. Double-diffusive con- 
vection in a stably stratified porous layer destabilized 
by lateral heating has been studied by Gershuni et al. 
[11] and Khan and Zebib [12]. 

Based on the above discussion it can be concluded 
that the problem of  double-diffusion in a fluid satu- 
rated porous medium has received some (rather 
recent) attention. In all the published studies discussed 
earlier, the fluid saturating the porous medium was 
assumed to be Newtonian. However,  in several of  the 
engineering applications listed at the beginning of  this 
section (such as oil recovery, food processing, the 
spreading of  contaminants in the environment and 
in various processes in the chemical and materials 
industry) the fluid saturating the porous matrix is not  
necessarily Newtonian. In our literature survey we 
were not  able to identify any published studies on 
double-diffusion in a porous layer saturated with a 
non-Newtonian fluids. Even in the limit o f  thermal 
convection in a porous medium saturated with a non- 
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NOMENCLATURE 

A constant in flow model, equations (6) 
and (7) 

Cp specific heat 
C concentration 
D mass diffusivity 
E energy 
f similarity streamfunction profile 
F dummy variable 
g gravitational acceleration 
G buoyancy ratio for constant 

temperature and concentration 
condition, equation (47) 

G* buoyancy ratio for constant heat and 
species flux, equation (69) 

H height of the wall, Fig. 1 
k thermal conductivity 
Le Lewis number, o~/D 
m permeability 
n power law index 
p pressure 
P constant in power law variation, 

equation (18) 
q', q" heat transfer rate per unit length and 

area, respectively 
Q constant in power law variation, 

equation (19) 
Ra thermal Rayleigh number for constant 

temperature and concentration, 
equation (26) 

Ra* thermal Rayleigh number for constant 
heat and species flux, equation (59) 

S 
Sh 
T 
U 

t) 

V 

x , y  

W ~, W" 

similarity concentration profile 
Sherwood number 
temperature 
velocity in the x-direction, Fig. 1 
velocity in the y-direction, Fig. 1 
velocity vector 
Cartesian coordinates, Fig. 1 
rate of mass transfer per unit length 
and area, respectively. 

Greek symbols 
thermal diffusivity 

fl coefficient of thermal expansion 
tic coefficient of concentration expansion 
6c concentration boundary layer 

thickness 
6v thermal boundary layer thickness 
F consistency index 
q similarity variable 
0 similarity temperature profile 
2 exponent in power law variation, 

equations (18) and (19) 
/~ viscosity 
p density 
qJ streamfunction. 

Subscripts 
a apparent 
o wall property 
y local quantity 

far field. 

Newtonian fluid driven by temperature gradients 
alone, the number of existing works is very limited. 
To this end, Chen and Chen [13] studied numerically 
the problem of boundary layer free convection (driven 
by temperature gradients) about an isothermal ver- 
tical plate in a porous medium saturated by a power 
law fluid. They found a significant dependence of the 
temperature field and the heat transfer rate from the 
plate on the power law index. Poulikakos and Spatz 
[14] investigated the effect of non-Newtonian natural 
convection at a melting front in a permeable matrix. 
Their results documented the dependence of the local 
heat transfer rate at the melting front as well as the 
dependence of the temperature and flow fields in the 
melt, on the type of power law fluid saturating the 
porous matrix. 

The present study investigates the basic problem of 
boundary layer double-diffusion from a vertical plate 
embedded in a porous material saturated with a power 
law fluid. Scaling analysis is performed to identify the 
various flow, heat transfer and mass transfer regimes 
for both cases when the plate is isothermal and of 
constant concentration as well as when the heat and 
species fluxes at the plate are constant. A numerical 

solution of the problem is also presented such that the 
plate temperature and concentration are allowed to 
vary arbitrarily with distance along the plate. The 
constant plate temperature and concentration case as 
well as the case of constant heat and mass fluxes at 
the plate are extracted as specific results of the general 
formulation. 

2. MATHEMATICAL FORMULATION 

Consider the boundary layer flow in the vicinity of 
an impermeable vertical plate embedded in a porous 
medium which is saturated by a power law fluid, as 
shown in Fig. 1. The temperature and the con- 
centration (of a certain constituent) of the porous 
medium far away from the plate are denoted by Too, 
C~. A host of possibilities for the boundary conditions 
at the plate will be considered later in this section. 
Because of this fact, temperature and concentration 
gradients exist in the system which yield a buoyancy- 
driven flow. The present study focuses on the case 
where this flow is of  the boundary layer kind as exem- 
plified by the schematic of Fig. 1. 

The boundary layer equations governing the con- 
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Fig. l. Schematicofl;hedouble-di~siveboundarylayerof 
interest and the coordinate system. 

servation of mass, momentum, energy and species are 
[15-18] 

~u av 
+ 77 = 0 (1) 

ax vy 

mOp 
u . . . .  (2) 

#a OX 

) v . . . .  + pg (3) 
#a 

itT c~T ~2 T 
u 7~ + v fffy = c( Ox ~ (4) 

0(S (~C (~2C 
u T:~ + v ~ y  = D &~- .  (5) 

In the above equations, x and y are the Cartesian 
coordinates (Fig. l), u and v the Cartesian velocity 
components (Fig. 1), p the pressure, T the tempera- 
ture, C the species concentration, p the density, c( the 
effective thermal diffusivity, D the effective species 
diffusivity and m the permeability of the porous 
medium. The apparent viscosity, #., of the porous 
matrix saturated with a power law fluid with zero yield 
stress is given by [15, 16] 

ix: = A I + I " - '  

= A(u  2 + V2)("- O/2. (6) 

The constant A in the equation (6) is related to the 
rheological parame.ters (the power law index n and 
the consistency index F) and the properties (the per- 
meability m and the porosity 4, of the porous medium) 
as follows : 

2F 
A = . (7) 

(8)("+ l)/2 (mc~ )("- ')/2 ( l ~ 3 n ) "  

Note that for a Newtonian fluid (n = 1), equations 
(6) and (7) yield A = F =/A, where /q is now the 
Newtonian effective viscosity and Darcy's law is re- 
covered. Introducing the Boussinesq approximation 
in the buoyancy term of the momentum equation (3) 

p = po~[1-~(T-T~o)-]Tc(C-Coo)] (8) 

where ]7 and /7 c are the coefficients of thermal and 
concentration expansion, and eliminating the pressure 
between equations (2) and (3), yields (in the boundary 
layer limit) 

Or" m g p ~  i i { (~T (3C\ 

A • 
(9) 

To complete the mathematical formulation of the 
problem, the boundary conditions need to be 
discussed. The velocity boundary conditions are the 
non-permeability of the vertical plate and the motion- 
less state of the fluid far away from the plate : 

x = 0 :  u = 0  (10) 

x ~ o o :  v = 0 .  (11) 

As mentioned earlier, far from the plate the tem- 
perature and concentration are constant : 

x ~ oo : T = To~ C = Coo. (12,13) 

Regarding the wall thermal and concentration con- 
ditions three cases will be examined : initially, scaling 
analysis will be performed for two situations. First the 
case where the plate is at constant temperature and 
concentration : 

x = 0 :  T = T 0 = c o n s t a n t  C = C 0 = c o n s t a n t  

(14, 15) 
and, second, the case where the heat and species fluxes 
at the plate are constant : 

_ k C ~ T =  q" OC w" (16, 17) 
x = 0 :  Ox - D ~ x  = " 

In the above equations, the subscript "0" denotes the 
wall, k is the effective thermal conductivity of the 
porous medium, q" is the wall heat flux and w" the 
wall species flux. The remaining quantities have been 
defined earlier. 

Subsequently, the problem will be solved numeri- 
cally for the general case where the wall temperature 
and concentration vary arbitrarily : 

x = O : T =  To = T~ + Pya C = Co = Co~ + Qy~ 

(18, 19) 

where P, Q and 2 are constants. With no loss of 
generality it is assumed that both P and Q are positive 
constants (P > 0, Q > 0). Before closing this section, 
we note that equation (9) can be integrated explicitly 
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in the x-direction between an arbitrary point inside 
both the boundary layers and a point at "infinity" 
(outside both the boundary layers). This integration 
reduces the order of equation (9) and facilitates the 
solution process. The result reads [after applying 
boundary conditions, equations (10)-(13)] 

v" = mg--~-ff~[fl(T-- Too)+flc(C-Coo)].  (20) 

3. SCALING ANALYSIS 

3.1. Constant wall temperature and species con- 
centration 

In this case, the mathematical model consists of 
equations (1), (4), (5), (10)-(15) and (20). At the onset 
of the scaling analysis appropriate scales of the various 
quantities are selected whenever possible. An exten- 
sive discussion on scaling analysis and its application 
in convective heat transfer is included in ref. [19]. The 
notation used in this section is the same to the notation 
of the previous section with the understanding that 
the symbols denote the scales of the actual quantities. 

To facilitate the scaling analysis, beginning with the 
definition of a vertical velocity scale, two limits will 
be examined sequentially: heat transfer driven flow 
and mass transfer driven flow. 

3.1.1. Heat transfer driven flow. In this case, the 
thermal gradients dominate over the Concentration 
gradients in the buoyancy force, i.e. 

[ f l (To-T~)]  >> 13c(C0-Coo)l. (21) 

The scale for the vertical velocity is obtained directly 
from equation (20) : 

v ~ [ m y p ~ 3 ( T - -  T~)I ' /" .  (22) 

Applying scaling to the energy equation (4) inside the 
thermal boundary layer (of extent fTXH) yields 

To -- To~ To - T~ (23) 
u +v  H ~ 6----27-- r 

At the same time from the continuity equation 

U V 

6-7 ~ H '  (24) 

Combining equations (22)-(24), we conclude that, in 
order of magnitude sense, 

fT  ~ H(Ra)-l[2n (25) 

where the Darcy-modified Rayleigh number is defined 
as  

mgpoofl(To -- T~o)H" 
Ra - (26) 

A~t" 

The overall Nusselt number scale is obtained directly 
from the definition of the Nusselt number 

ql 
Nu = (27) 

k(T0 - T~o) 

Taking into account that 

q' ~ k n  To - T~ (28) 
6r 

and invoking equation (25) yields 

Nu ~ ( Ra) 1/2,. (29) 

Despite the fact that the flow is driven by tem- 
perature gradients in the present limit, mass transfer 
occurs since the constituent in the mixture is carried 
along with the flow and species diffusion occurs simul- 
taneously. The overall mass transfer from the wall is 
described by the Sherwood number 

W' 
s h  - (30) 

D(Co - Coo)" 

Recognizing that the mass transfer rate per unit length 
scales as 

Co - C~ 
w" ~ D H - -  (31) 

&c 

the Sherwood number scale is expressed as 

H 
Sh ~ 6c " (32) 

To obtain the scale of &c is not straightforward. As 
discussed in detail in Bejan and Khair [3] this scale 
depends on the relative magnitude of  f r  and fc- Since 
this discussion can be easily found in ref. [3], it will 
not be repeated here for brevity. 

To proceed, we integrate the species conservation 
equation (5) across the double boundary layer starting 
from the wall to a point (x) outside both fT and fc : 

d f [  . . . .  (•T. 0c) __D{&C" ~ ~y v ( C - C o o ) d x  = \ O x j x =  ° (33) 

In terms of scaling, equation (33) becomes 

v(C0 Coo) min(fr,&c) ~ D ( C 0 -  Coo). (34) 
H fc 

As explained in detail by Bejan and Khair [3], the 
utilization of the term rain (fir, fc) in equation (34) is 
necessary to assure that we are dealing with a layer 
that moves upward because of thermal gradients and, 
at the same time, is rich in the species diluted in the 
mixture. 

(a) fc << aT 

In this case, rain (aT, fc) = fc and equation (34) 
together with equation (22) yields 

6c ~ H L e -  1/a R a -  l[2n (35) 

where the Lewis number is defined as usual : 

Le = ct/ D. (36) 

Combining equations (32, 35) we obtain 
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Sh ~ Le 1/2 Ra 1/2". (37) 

Comparing the scales of  the thermal to the con- 
centration boundary layers, we discover that [equa- 
tions (25) and (35)] 

6c ~ Le -  1/2. (38) 
6T 

Hence, the condition 6c << fiT is equivalent to Le >> 1. 

(b) 6c >> 6T 

in this case, eq:aation (34) yields, after taking into 
account equation,; (22) and (25), 

6c ~ H L e -  1 Ra-  1/2,. (39) 

Utilizing equation (39) and the scale for Sh, equation 
(34), 

Sh ~ Le Ra I/2". (40) 

Again, comparing the scales for 6c and 6T, equations 
(25) and (39), we see that 

6c 
6-~ ~ Le-' .  (41) 

Hence, the limit 6c >> 6T is equivalent to Le << 1. 
3.1.2. Mass transfer driven flows. For the flow to be 

driven by concentration gradients alone 

I/~(T0-- T~)I << I/~c(Co - C~)I. (42) 

The momentum equation (20) in this case yields the 
following vertical velocity scale : 

v ~  [mgP~[3c(C°-C~)-]  TM. (43) 

The scaling equivalent of the species concentration 
equation (5) in the region (6cxH) is 

Co - C~ Co - Coo D Co - Coo 
~---c + ~ 6~ (44) 

The scaling equivalent of the continuity equation in 
the same region is 

U ~) 

6--~ ~ ~. (45) 

Combining equations (43)-(45), we obtain the fol- 
lowing scale for the concentration boundary layer 
thickness : 

6c ~ t t L e  -'/2 Ra-I/2nlG]-l/2" (46) 

where the buoyancy ratio is defined as 

G - / ~ c ( C 0  - Coo) (47) 
fl(To - T~) 

The parameter G measures the relative importance of 
mass and thermal[ diffusion in the buoyancy driven 
flow. Clearly, G is zero for thermal driven flows, infi- 
nite for concentration driven flows, positive for aiding 
flows, and negative for opposing flows. Note that in 
the present limit according to equation (42), IGI >> 1. 

The expression for the overall Sherwood number is 
obtained from equations (32) and (46) : 

Sh ,~ Le 1/2 Ral/2"IG 11/2,. (48) 

To calculate the overall Nusselt number scale, 
knowledge of the scale for the thermal boundary layer 
thickness is necessary. The procedure for obtaining 
the scale for 6x is similar to the procedure followed to 
obtain the scale for 6c in Section 3.1.1 (heat transfer 
driven flow). To this end, integrating the energy equa- 
tion (4) in the x-direction from the wall to a point 
outside the double boundary layer structure yields 

dyy J0 v ( T -  To) dx = \Ox]~ = 0" (49) 

Scaling the above equation 

v(To- To) ~(To- T~) 
H min(bT, ~5c) 6-r (50) 

The appearance of the quantity rain (~x,6c) was 
explained earlier following equation (34). Two cases 
need to be considered as in Section 3.1.1. 

(a) 67 << ~c 

In this case, equations (43) and (50) result in 

6T ~ H Ra-1/2"IG[-1/2". (51) 

The corresponding expression for Nu is 

Nu ~ Ral/2"tG I l/2n (52) 

Much like before, by comparing the scales for 6T << 6c 
we conclude that this statement is equivalent to 
Le << 1. 

(b) 6x >> 6c 

Taking into account the fact that min (fiT, 6c) = 6c 
and combining equations (43), (46) and (50) results 
in 

3 T ~ H L e  1/2 Ra-  l /2nlG[- 1/2n (53) 

the expression for Nu is obtained as usual via equa- 
tions (27), (28) and (53) : 

Nu ,,~ Le-1]2 RaJ/2,IG I 1/2n. (54) 

In a manner analogous to what was explained earlier, 
it can be easily shown that 67 >> 6c is equivalent to 
Le >> 1. 

The key results of this section, both for the heat 
transfer driven flow and the mass transfer driven flow 
scenarios, are summarized in Table 1. It is worth men- 
tioning here that in the limit of a Newtonian fluid 
(n = 1) all the results of Table 1 reduce identically to 
the analogous quantities of ref. [3]. 

3.2. Constant wall heat and species f lux 
The mathematical model remains unchanged except 

for the fact that the boundary conditions, equations 
(16), (17), replace the boundary conditions, (14) and 
(15), utilized in Section 3.1. Again, we will consider 
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Table 1. Scales of various quantities of interest for a surface at constant temperature and concentration 

Driving potential 6r 6c Nu Sh 

Temperature 
gradients, IGI << 1 Le >> 1 H(Ra) -~/~" H Le -~/2 Ra -~/2" (Ra) ~/2" Let/2 Rail2" 
Temperature 
gradients, ]G[ << 1 Le << 1 H( Ra) -1/2" H Le - I R a  -I/2" ( Ra) I/2" Le Ral/2" 
Concentration 
gradients, ]G[ >> 1 Le << 1 H(RaIG[) -1/2" H Le-I/2(RaIG[) -1/2" (RaiG[) I / 2 "  Lel/Z(Ra[G]) 1/2" 
Concentration 
gradients, IGI >> 1 Le >> 1 H LeJ/2(RalGI)-J/2, H Le-I/2(RalGI) m ,  Le-II2(RalGi)I/2, Lel/2(RalGI)I/2. 

sequentially the cases of heat transfer driven flow and 
mass transfer driven flow. 

3.2.1. Heat  transfer driven f low.  Since the wall tem- 
perature and concentration are unknown and vari- 
able, we need to define at the outset, approximate 
scales for the characteristic temperature and con- 
centration differences in the system (AT and AC, 
respectively). Utilizing the scaling equivalent of the 
constant flux boundary conditions, (16) and (17), 
yields 

A T  ~ q"f'r A C  ~ w " f c  (55, 56) 
k D 

Note that the above scales depend on the thickness of 
the thermal and concentration boundary layers. For 
heat transfer driven flows, IGI << 1, the vertical vel- 
ocity scale results directly from the momentum equa- 
tion (20) accounting also for equation (55) : 

The thermal boundary layer thickness is obtained 
from the scaling of the energy equation (4) in the 
region (frxH).  The procedure is identical to what led 
to equation (25) with the difference that the tem- 
perature difference scale is not (To -  T~) but AT as 
defined by equation (55). The final result for the ther- 
mal boundary layer thickness is 

fiT ~ H ( R a * ) -  l/(2n+ 1) (58) 

where the Darcy-modified Rayleigh number for the 
constant heat flux case reads 

m y f l p ~ H . +  i q,, 
Ra* = (59) 

AoCk 

The Nusselt number is defined as 
t! 

H 
N u  = k ~ ~v" (60) 

Combining equations (58) and (60) 

N u  ~ (Ra*)  1/(2, + 1). (61) 

As in Section 3.1, the mass transfer scales in the 
present case of heat transfer driven flow will be evalu- 

ated, next. The overall Sherwood number is defined 
as 

w" 
~ C  H H 

sh (62) 
D 6c 

To obtain the scale for Sh, the scale for 6c is needed. 
Following the procedure utilized in Section 3.1, the 
species concentration equation needs to be integrated 
between the wall and a point outside both the 
boundary layers. The outcome of this procedure yields 
a scaling statement identical to equation (34) with 
(Co-Co~)  replaced by AC; equation (56). To deter- 
mine the quantity min (6T, 6c), as before, two cases 
will be considered. 

(a) 6c << f r  

In this case, 6c = min ( fo  fiT). Equation (34) (with 
the above-mentioned modification) yields 

f c  ~ HLe- I /2 (Ra*) -1 /~2 ,+ l) (63) 

By combining equations (62) and (63), we obtain 

Sh ~ Le l /2(Ra*)  1/(2n+ i). (64) 

Again, as in Section 3.1, the limit 6c << 6T is equivalent 
to Le >> 1. 

(b) 6c >> 6T 

Omitting the details for brevity the results in this 
case are 

6c ~ H L e -  l ( R a * ) -  1/(2,+ 1) (65) 

Sh ~ Le (Ra* )  i/(2,+ i) (66) 

3.2.2. M a s s  transfer driven f low.  The velocity scale 
is obtained from equation (20) after neglecting the 
heat transfer contribution to the body force term and 
by invoking equation (56) to scale the concentration 
differences : 

[ ,, ,tt~ \ l /n  
re  t J C i  

v ~ - -  - . (67) 

The scale for the concentration boundary layer 6c in 
equation (67) results from a scaling analysis of the 
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species concentration equation (5) in the region 
(3cxH). The procedure is identical to that which led 
to equation (46) earlier. In the present case, the final 
result is 

6c ~ HLe-'#(2"+°(Ra*)-I/(2"+°]G*1-1/(2"+1) (68) 

where the buoyancy ratio (for constant heat and species 
flux) is defined as 

G* (flcW"/D) 
(flq"/k) " (69) 

Combining equations (62) and (68) yields the cor- 
responding scale for the Sherwood number 

Sh ~ Le"/(2"+t)(Ra*)l/(2"+°lG*lJ/(2"+° (70) 

To obtain the scales of  the characteristic heat transfer 
quantities in the mass transfer driven boundary layer 
flow, the energy equation is integrated in the x-direc- 
tion between the wall and a point outside both bound- 
ary layers. The scaling equivalent of the resulting inte- 
gral equation is identical to equation (50) with AT, 
given by equation (55), replacing the quantity 
(To-To~). As in earlier cases, two possibilities are 
considered to evaluate the quantity rain (6x, 6c). 

(a) 6T << 6c 

Here rain (6r, 6c) = 6r and equation (50) yields 

6x ~ HLeU2(2"+°(Ra*)-1/(2"+°[G*[ -I/~2"+~) (71) 

Combining equations (60) and (71) 

N u  ~ Le-Ut2(2"+l)~(Ra*)l/(Z"+l)lG*[l/(2"+°. (72) 

As discussed before~, the results (70) and (71) are valid 
if Le  << 1. 

(b) 6T >> 3c 

In this case, min (6T, 6C) = 3C. Following identical 
procedure, it can be shown that in the present domain 
(6x >> 3c or Le  >> 1) 

6v ~ H L e  ("+ 1)/(2n+ i:,(Ra. ) -  1/(2,+ i ) [G' l -  1](2n+ 1) (73) 

N u  ~ Le-~"+l)/°"+l~(Ra*)l/(2"+°[G*[ ~/(2"+°. (74) 

The main results for the scales of  the various quantities 
in the case of constant wall heat and species fluxes are 
summarized in Table 2. 

Before closing thi,~ section, it is worth discussing the 
range of  validity of the scaling results (as well as the 
numerical results of  the next section). Clearly, these 
results are valid when a double boundary layer struc- 
ture (of the type shown in Fig. 1) is present in the 
system, a fact which is largely independent of the sign 
of the buoyancy ratio G or G*. If  the buoyancy ratio 
is negative as in the case of the mass transfer driven 
flow for example, the implication is simply that the 
fluid is traveling in the negative y-direction (opposite 
to what is depicted in Fig. 1). A question arises when 
the two contributions to the buoyancy force (tem- 
perature and concentration) are opposing each other, 
and, at the same time, they are of  equal strength, i.e. 

8 

.o 
o 

0 

o 

0 
e~ 

+ ~ 

÷ ~ 
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the buoyancy ratio is of the order of negative unity 
(G or G * ~  0 ( - 1 ) ) .  This situation was not en- 
countered in the scaling analysis where only large (in 
the absolute sense) values of the buoyancy ratio were 
considered (G or G*>> 1, and G or G * < < - 1 ) ,  
Clearly, when G or G * ~  0 ( - 1 )  the heat transfer 
driven flow will "collide" with the mass transfer driven 
flow which is of similar strength and travels in the 
opposite direction. In this case, the double boundary 
layer structure discussed earlier cannot exist and the 
present analysis does not apply. As will become ob- 
vious in the following section, numerical solutions of 
the boundary layer type in this regime fail to converge 
as well. 

4. NUMERICAL SOLUTION 

4.1. Formulation of the similarity model 
The mathematical model for the general case of 

variable wall temperature consists of equations (1), 
(4), (5), (10), (11), (18), (19) and (20). This model 
accepts a similarity transformation in the limit of  
boundary layer approximations. The similarity vari- 
able is defined by observing the functional form of the 
scale for the thermal boundary layer thickness in the 
case of heat transfer driven flow with constant wall 
temperature and concentration [equation (25)]. This 
choice is based on the fact that it will yield a similarity 
variable which is independent of  Le. To this end, 

X 
r/ ----- - ( R a y ) I / 2 .  ( 75 )  

Y 

where 

mg[Jp~Py x+" 
Ray - (76) 

Note that equation (26) becomes identical to equation 
(75) if H is replaced by y and equation (18) is used 
for To. Introducing the streamfunction in the usual 
manner 

U = ~ y  v =  dx (77, 78) 

we postulate that 

= c~ Ra~12"f(~). (79) 

Combining equations (77)-(79) yields 

v = - -Ra~l"f" (80) 
Y 

~ 2 + n  2 - n  
U=yRay/2"(-~n f+--~-n Jlf" ). (81) 

Utilizing equations (75), (80) and (81) we cast the 
conservation equation for momentum, energy and 
species in the following form : 

f '  = - (0 + GS) TM (82) 

2 + n  
0" --- -~n fO'-- 2f'O (83) 

S " =  L e ( ~ n n f S  ' -  2f 'S)  (84) 

where the dimensionless temperature and species con- 
servation are defined as 

T-T ,~  C-Co~ 
0(r/) - To - Too S(~/) Co - Co '  (85, 86) 

The similarity form of the boundary conditions is 

q = 0 : f = 0  0 = 1  S = I  (87)-(89) 

r / -~oo:  f ' = 0  0 = 0  S = 0 .  (90)-(92) 

At this point, the similarity formulation of the prob- 
lem is complete. Before proceeding with the numerical 
solution, several issues that will facilitate the solution 
process and the presentation of the results need to be 
discussed. 

First it is obvious that by setting 2 = 0 in the general 
model one recovers the limit of constant wall tem- 
perature and concentration. What is, however, the 
value of 2 that yields the constant heat and mass 
flux limit? This value is obtained by evaluating the 
expression for the heat or mass flux at the wall. Choos- 
ing the former, 

= _k fOT~ fmaRo "0/2" 
" = kp2"+l/2"~ .... I 

qx:0 t, eXL:o / 

× y(~#+x) t -0 ' (0 ) ] .  (93) 

From equation (93), we easily arrive at the important 
result that for the wall heat flux to be constant (inde- 
pendent of y) 

n 
2 = 2n ~- 1" (94) 

It can be shown identically that the same value of 2 
yields a constant mass transfer rate at the wall. Hence, 
the value of 2 for constant heat and mass transfer rate 
at the wall depends on the power law exponent of the 
fluid saturating the porous matrix and it is fixed once 
thefluid is specified. In the limit of Newtonian fluids 
(n = 1) equation (94) yields the well-known value 
2 = 1/3 [20]. Substituting equation (94) into equations 
(82)-(84) one obtains the similarity conservation 
equations for the case of constant wall heat and mass 
fluxes (not shown here for brevity). It is worth noting 
however that one can arrive at these equations inde- 
pendently if the thickness of the thermal boundary 
layer for the case of heat transfer driven flow from a 
constant heat and species flux wall, equation (58), had 
been used in place of equation (25) to construct the 
similarity variable and, subsequently, the similarity 
model. Note that, with the general formulation of the 
mathematical model, the boundary conditions for the 
constant heat and mass flux remain identical to equa- 
tions (87)-(92). 
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Another interesting finding is extracted utilizing the 
expression for the total amount of energy or species 
convected at any location y. Opting for the former, 

f+ E(y )  = p~ocp v ( r -  T~)  dy  
0 

- • c I'rng~o~P'~l/2" 

x py[~O +2.>+.]/2. f ' (~)O(~) dr/. (95) 

Note that the value of the energy integral, equation 
(95), increases with y if 

n 

2 > - - -  (96) 
1 +2n 

(n is a positive number). 
More importan~tly, the energy integral (95) is inde- 

pendent o f y  if 

n 
2 = - 1 +2---~" (97) 

The same result is obtained if the species convection 
integral instead of the energy integral of  equation (95) 
is evaluated. Hence, the value of 2 given by equation 
(97) corresponds to the case of heat and mass transfer 
from a constant heat and mass flux horizontal line 
source embedded in a porous medium. In the limit of 
n = 1 equation (97) yields the earlier published value 
2 = - 1/3 for this configuration [20]. 

The similarity model outlined above [equations 
(82)-(92)] was solved using the integral method [21, 
22]. To initiate the numerical solution process, the 
temperature and concentration fields were guessed to 
vary linearly between r /=  0 and +7 = r/~ while satisfy- 
ing the boundary conditions given by equations (88) 
and (89) and equations (91) and (92), respectively. To 
satisfy the boundary conditions at infinity, an inte- 
gration distance r/~o = 10 was found to be adequate. 
The iterative integration procedure was repeated until 
the convergence was obtained in terms of the criterion 

max IF'(q)-F '~r (r/)J ~< 10 -s  (98) 

where F represents f(q), 0(r/) and S(r/). The iteration 
number is denoted by i. The integration was per- 
formed using the trapezoidal rule with a step size 
At /=  0.001. To obtain the solution, for the negative 
values of the buoyancy ratio G (opposing flows), the 
similarity momentum equation (82) was modified as 

f '  = - ( - O - G S )  TM (99) 

because the flow occurs in the negative y-direction. 
The local heat and mass flux at the wall was cal- 

culated in terms of the local Nusselt and Sherwood 
numbers that are defined as follows : 

q~+ o Y - O'(O)Ra~/2~ (100) 
Nu = (To -- T+)k  = 

A 
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Fig. 2. The effect of buoyancy ratio on temperature, con- 
centration, and velocity profiles for a surface with constant 

temperature and concentration : (a) n = 0.5 ; (b) n = 2.0. 

tt 

Sh = Wx,o y 
( C o - C ~ ) D  S'(O)Ra~/2n. (1011 

4.2. Discussion o f  numerical results 
The numerical solution of the mathematical model 

outlined in Section 4.1 aims at determining the effect 
of  the main parameters of the problem on the tem- 
perature and concentration fields in the system and 
on the heat and mass transfer rates at the vertical 
surface. The accuracy of the numerical solution was 
tested by reproducing the results reported in ref. [3] 
in the limit of Newtonian fluid (n -- 1) and constant 
temperature and concentration at the surface (2 = 0). 

The discussion of  the results starts with the effect of 
the buoyancy ratio on the temperature, concentration, 
and velocity distributions. To this end, Fig. 2 shows 
temperature, concentration, and velocity profiles in 
the double-diffusive boundary layer structure for a 
pseudoplastic fluid [n = 0.5, Fig. 2(a)], as well as for 
a dilatant fluid [n = 2, Fig. 2(b)] saturating the porous 
matrix, for a host of values of  the buoyancy ratio, G. 
The wall temperature is modeled as isothermal and of 
constant concentration (2 = 0) and the Lewis number 
is set equal to unity rendering the thermal boundary 
layer identical to the concentration boundary layer in 
this illustrative case. The solid lines in Fig. 2(a) and 
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(b) represent the temperature and concentration dis- 
tributions and the dashed lines the vertical velocity 
component  distribution. In all cases, the temperature 
and concentration decrease monotonically away from 
the wall. For  G = 0 (flow driven by temperature gra- 
dient alone) the thermal and velocity boundary layers 
are the thickest and the temperature, concentration, 
and velocity gradients at the wall the smallest. The 
value of G = 2.5 implies that the temperature and 
concentration buoyancy effects drive flows in the same 
direction (aiding one another). Indeed, this case yields 
the thinnest boundary layer and the sharpest gradients 
at the wall. When the thermal  buoyancy opposes the 
concentration buoyancy in a flow moving in the direc- 
tion of concentration buoyancy, G = - 2 . 5 ,  the flow, 
temperature, and concentration layers thicken as com- 
pared to the case of G --- 2.5 and the corresponding 
gradients at the wall decrease. While Fig. 2(a) and (b) 
exhibits similar qualitative features, it is obvious that 
the effect of G becomes weaker as the value of the 
power law exponent increases from n "-0 .5  in Fig. 
2(a) to n = 2 in Fig. 2(b). Furthermore,  the velocity 
boundary layer is thinner than the thermal and con- 
centration boundary  layers for pseudoplastic fluids 
(n = 0.5), whereas the velocity boundary  layer is 
thicker than the thermal and concentration boundary 

layers for dilatant fluids (n -- 2). Velocity, tempera- 
ture, and concentration distributions, when constant  
heat and mass transfer rates are produced at the wall 
[2 = n/(2n+ 1)], also exhibited similar patterns. The 
corresponding figures are not  shown here for brevity. 

The effect of  the Lewis number  on the local Nusselt 
and Sherwood numbers,  equations (100) and (101), 
is shown in Fig. 3(a)-(d) for several values of the 
buoyancy ratio. Figure 3(a) and (b) shows the effect 
for a wall at constant  temperature and concentration, 
whereas Fig. 3(c) and (d) illustrates the same effect 
for a wall with constant  heat and mass flux. In both 
these cases, as the Lewis number  increases, the heat 
transfer rate at the wall decreases and the mass trans- 
fer rate increases. The effect of Le becomes weaker as 
the buoyancy ratio decreases. For  G = 0 (flow driven 
by temperature gradient alone) the heat transfer rate 
is independent of Le. As the Lewis number  approaches 
zero (species diffusivity much larger than thermal 
diffusivity), the heat transfer rate at the wall becomes 
practically independent of the Lewis number  for all 
values of the buoyancy ratio. In the other extreme (as 
Le becomes very large), the heat transfer rates at the 
wall for various values of G approach asymptotically 
plateau values as well. Furthermore,  the mass transfer 
rate is significantly increased as Le increases. The 
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Fig. 3. The dependence of the local heat and species transfer rates on the Lewis number : (a) for a wall 
with constant temperature and concentration, n = 0.5; (b) for a wall with constant temperature and 
concentration, n -- 2.0 ; (c) for a wall with constant heat and species flux, n = 0.5 ; and (d) for a wall with 

constant heat and species flux, n = 2.0. 
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effect of Le on the: heat and mass transfer rates at the 
wall is more prominent for n = 0.5 compared to n = 2 
for all values of the buoyancy ratio. 

Figure 4 shows the variation of the quantity 
-0 ' (0 )  [G[- , /2. with the buoyancy ratio G for several 
values of the power law exponent. Note that the Lewis 
number is set equal to unity, and the wall is modeled 
as isothermal and of constant concentration. In the 
limit of IGi >> 1 the scales given in Table 1 combined 
with equations (100) and (101) suggest that the order 
of magnitude of -O'(O)IGI -t/2" should approach a 
constant of order unity. Clearly, Fig. 4 illustrates this 
trend for the values of IGi >> 1. Furthermore note that 
no similarity solution could be obtained for the values 
of the buoyancy ratio in the regime - 1 < G < 0 and 
for Le = 1. As mentioned earlier in Section 3.1, when 
the buoyancy effects due to temperature and con- 
centration gradients are of the same order of mag- 
nitude and in opposite directions, similarity for- 
mulation breaks down as the double boundary layer 
structure ceases to exist. 

Next, we examine the effect of the power law 
exponent on the heat and mass transfer rates at the 
wall. To this end, Fig. 5(a) shows the results for an 
isothermal and constant concentration wall (2 = 0) 
whereas Fig. 5(b) contains the results for a wall with 
constant heat and mass flux [2 =n/(2n+l)] .  The 
Lewis number is unity in both these figures. For aiding 
flows (G = 0.5, 1) the temperature and concentration 
gradients at the wall decrease with increasing values 
of n. For the flow driven by the temperature gradient 
alone (G = 0), the temperature and concentration 
gradients at the wall also decrease with an increase in 
the power law exponent. The opposite trend is found 
for opposing flows with G = - 2 .  Interestingly, this 
trend will not be true for all opposing flows. For 
example, a close scrutiny of equations (82) and (99) 
reveals that for a Lewis number of unity a value of 
G = - 3  will yield results identical to those of the 
aiding flows with G = 1 [note that the right hand side 
of equations (82) and (99) becomes identical for the 
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Fig. 5. The dependence of the local heat and species flux 
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temperature and concentration and (b) for a surface at con- 
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two cases]. In the latter case, as discussed earlier, 
the temperature and concentration gradients decrease 
with increasing value of n. Note further that heat and 
species transfer rates at the wall become independent 
of the power law exponent in the range n > 2 for all 
values of the buoyancy ratio. 

The effect of parameter 2 on the temperature and 
concentration gradients at the wall is shown in Fig. 6 
for three different values of n while the Lewis number 
is kept equal to unity. The parameter 2 is varied 
between - n / ( 2 n +  1) and unity. This figure presents 
two sets of curves, one corresponding to G = - 2  
(opposing flows) and the other to G = I (aiding 
flows). For both these stability ratios and for all fluids, 
an increase in value of parameter 2 results in an 
increased value of the heat and mass transfer rates at 
the wall. Clearly, for G = 1, the effect of the parameter 
2 on the local heat and species flux is the greatest for 
n = 0.5 and the least for n = 2, while the opposite is 
true for G = - 2 .  

5. CONCLUSION 

This paper presented a fundamental study of the 
phenomenon of double-diffusion near a vertical sur- 
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Fig. 6. The effect of the parameter 2 on the local heat and 
species transfer rates. 

face embedded in a fluid-saturated porous medium. 
The novel feature of  the present study lies in the fact 
that the fluid saturating the porous matrix is non- 
Newtonian (power law). The first part o f  the study 
reported the scales of  various quantities of  interest 
such as the thickness of  the thermal and concentration 
boundary layers as well as the Nusselt and Sherwood 
numbers for two limiting cases: (a) wall at constant 
temperature and concentration and (b) wall with con- 
stant heat and species flux. In the second half  of  the 
study, a mathematical  model  was pieced together and 
solved numerically so as to obtain the solutions for 
the above-mentioned two cases and to document the 
effect of  various problem parameters on the velocity, 
temperature, and concentration fields, as well as the 
local heat and mass transfer rates. 

The results indicate that the velocity boundary layer 
is thinner than the thermal and concentration boun- 
dary layers for dilatant fluids (n > 1). The opposite is 
true for pseudoplastic fluids (n < 1). An increase in 
the Lewis number results in a smaller local Nusselt 
number and a higher local Sherwood number at the 
vertical surface. For  a fixed Lewis number, a higher 
value of  the buoyancy ratio leads to enhanced tem- 
perature and concentration gradients at the wall com- 
pared to the same gradients for the flows driven by 
the temperature gradient alone. The effect of  the Lewis 
number and the buoyancy ratio on the local heat and 
species flux at the wall is more prominent  for fluids 
with n < 1. 

For  values of  the power law index greater than two 
and for Le = 1, the local heat and species flux at the 
wall become independent of  the power law index. An 
increase in the value of  the parameter 2 results in 
increased heat and species transfer rates at the wall 
for all fluids and all flows. It was found that the vari- 
ation of  the wall temperature and concentration 
necessary to yield a constant heat and species flux at 
the wall, depended on the power law index [equation 
(94)]. 
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